arcsinx求导数

本文目录一览:

arcsiny的导数?

若x为自变量(arcsiny)'=y'/√(1-y^2),若y为自变量(arcsiny)'=1/√(1-y^2)

arcsinx的两阶导数?

y=arcsinx^2 y‘={1/√(1-(x^2)^2)}*(x^2)‘ y‘={1/√(1-x^4)}*2x =2x/√(1-x^4)

arcsinh导数?

y=arcsinx siny=x,两边对x求导 d(siny)/dy*dy/dx=1,链式法则dy/dx=dy/du*du/dx cosy*y'=1 y'=1/cosy,作个直角三角形:siny=x/1=对边/斜边,cosy=√(1-x²)/1=邻边/斜边=√(1-x²) y'=1/√(1-x²)

求arcsinx的导数请问过程是怎样的?

arcsinx的导数1/√(1-x^2)。 解答过程如下: 此为隐函数求导,令y=arcsinx 通过转变可得:y=arcsinx,那么siny=x。 两边进行求导:cosy × y'=1。 即:y'=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)。 扩展资料 隐函数求导法则 对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。 隐函数导数的求解一般可以采用以下方法: 方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导; 方法②:隐函数左右两边对x求导(但要注意把y看作x的函数); 方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值; 方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。 举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。

arcsin导数?

因y=arcsinx(-10 dy/dx=1/cosy=1/根号下1-x^2 所以arcsinx的导数为1除根号下1-x^2

arcsin的导数怎么求?

arcsinx的导数是:y'=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。推导过程:y=arcsinx,y'=1/√(1-x),反函数的导数:y=arcsinx,那么,siny=x,求导得到cosy*y'=1。